Introduction

The Gibb group has performed expansive research on the properties of deep-cavity cavitand Octa-acid (OA) (Figure 2). We are building on this work to examine the ability of OA to sequester hydrophobic guests. We will detail the sequestration of the constitutional isomers of hexane. NMR analysis will be used to investigate the formation of hetero-guest capsular complexes (Figure 1). We anticipate that the studies will provide information concerning reactions inside of water-soluble molecular capsule.

Evidence of Hetero-guest Complexation

Evidence of hetero-guest complexation can be seen in Figures 3 and 6. With two guests present, a small, new doublet appears slightly up field from the doublet that is seen in the original spectrum. With no free guest in solution and concentrations in equal amount, there is no competition for binding inside the cavitand. This second doublet is evidence of a hetero-guest complexation, and was observed in all hexane isomer complexes (Table 1).

Water-Soluble, Deep-Cavity Cavitands

The synthesis of the Octa-Acid (OA) cavitand (Figure 2) is accomplished in six steps. The final product consist of 8 water-solubilizing carboxylic acid groups and a hydrophobic pocket ideal for guest binding, and it has the capability to dimerize into a water-soluble molecular capsule capable of hosting hydrophobic guest.

Conclusion

Preferential binding has been demonstrated in competition studies between constitutional hexane isomers. The formation of hetero-guest complexes has been successfully established for all combinations of isomers. Further studies are ongoing, which will compare straight chain and cycloalkane homologs with one another for both separation and hetero-guest experiments.

Evidence of Direct Iodination of Anisole

In summary, we studied the reaction of iodine with anisole. We proved that they can’t react in water or CDCl3 at room temperature, and we found after adding the cavitand (TTMACl) as the catalyst, the reaction happened and with a high selectivity. The catalytic mechanism seems to be that iodine can bind strongly with the feet of cavitand in the water phase which facilitates the iodination of the anisole.

References


We would like to acknowledge Dr. Gibb for his lab resources and chemical expertise, Matthew Sullivan, Xiaoyang Cai, Matthew Hillyer, Paolo Suating, and Nicholas Ernst for their time, assistance, and patience, and the National Science Foundation for its financial support.