A Dual Hydrogel System to Prevent Axonal Overgrowth in 3D Neural Tissue Models

Ali Lateef1, Dr. Michael Moore2
1University of Florida, 2Tulane University

Background

Big Problem: 10+ years and $2.6B to bring a drug to market [1] and 2D models do not accurately recapitulate in vivo morphology or functionality [2]

Proposed Solution: Creation of a 3D microphysiological model that accurately mimics in vivo physiology to provide preclinical indications of clinical drug success

Technique: Combination of localized organization seen in cell spheroids with distant projections that are guided by a dual hydrogel structure

Dual hydrogel structure is constructed from an outer cell growth restrictive gel (PEGDA) and an inner cell growth permissive gel (Matrigel, GelMa, Puramatrix)

Problem

• Axon overgrowth occurs after several weeks
• Growth occurs on top of the restrictive PEG gel

Proposed Solution

• Switch the outer gel from PEGDA to 4-arm PEG norbornene and a PEG Dithiol crosslinker
• The benefits of switching to 4 arm PEG norbornene include known molecular weight between crosslinks, a more controlled and organized step growth network instead of a disorganized chain growth network, known swelling rates, use of less photoinitiator and the ability to take advantage of the thiol-ene click chemistry to add molecules with a thiol group
• Incorporation of axon growth inhibiting protein, Semaphorin 3A after thiolation

Methods

• Thiolate protein using SAT(PEG)4
• Incorporate thiolated protein into PEG crosslinking network

Results

• Formed a workable gel with the 4 arm PEG norbornene and the PEG Dithiol crosslinker

Best Formulation:
• 4:1 Ratio of PEG dithiol to PEG norbornene
• 20% PEG solution (w/v)
• 1.1 mM LAP photoinitiator
• 5 min of exposure to UV light at 385 nm
• Thiolated fluorescent BSA

Future Work

• Testing with varying protein concentrations
• Imaging of the thiolated fluorescent BSA included in the PEG crosslink network before and after washing
• Imaging of unthiolated fluorescent BSA in the PEG gel before and after washing
• Possible new protein detection method
• Inclusion of dorsal root ganglia cell spheroids
• Inclusion of the Semaphorin 3A (SEMA 3A) protein to inhibit axonal outgrowth

References

Acknowledgements

Thank you Dr. Moore, Dr. Kevin Pollard, Devon Bowser, Wesley Anderson, Mostafa Meselhe and Stephanie Zhao.
We thank the National Science Foundation for financial support through grants DMR-1460637 and DMR-1852274.